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Abstract:

The present study aims to develop a neuromorphic edge intelligence architecture anchored in memristor device
systems to enable smarter surveillance in smart sensors, raise the efficiency of energy consumption, speed of
processing, and flexibility. The traditional clouds based video surveillance systems have issues of high latency, power
consumption as well as data privacy. To counter such drawbacks, a bio-inspired neuromorphic architecture was
developed by combining memristor crossbar arrays and spiking neuron networks (SNNs). The surveillance datasets
that were used to evaluate the system include CAVIAR and UCF-Crime benchmark surveillance datasets. The
experimental evidence proved the high improvements, the reduction in the energy consumption, the acceleration of
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the inference latency (4.6 ms/frame) and the improvement in the general recognition accuracy (91.9%) were
outstanding, in comparison with the traditional CNN-based edge models. Besides, the system reported a 68 percent
decrease in bandwidth consumption and demonstrated good performance when the environmental conditions such as
low lighting and high motion density changed. The findings confirm that neuromorphic computing based on
memristors can offer a sustainable, energy-saving and privacy-friendly architecture to real-time smart surveillance.
The research adds to the development of neuromorphic structures, as the context adheres to closing the existing gap
between smart hardware development and intelligent edge analysis in future developments of intelligent city
applications.

Keywords: Neuromorphic Computing, Memristor Architecture, Edge Intelligence, Smart Surveillance, Energy
Efficiency

. INTRODUCTION

The surge in the need of smart, real time systems of surveillance has pointed to the inability of the traditional cloud-
based systems to process large volumes of visual data at low latency and power costs. With the development of urban
settings where the Internet of Things (IoT) and humanity grow closer, surveillance apps demand systems with the
ability to perform local decisions, minimize data transfer, and produce energy efficiently. In this regard, neuromorphic
edge intelligence seems to be a new paradigm solution, and it would make the edge node do the computing based on
the hardware architecture based on the human brain [1]. Through neural-like structures and mechanisms,
neuromorphic systems can execute experiences such as object discovery, activity identification, and anomaly
identification with great energy efficiency and speed. The key facilitator of this paradigm is the memristor, a non-
volatile, nanoscale electronic element, which is a storage and processing unit of information simultaneously [2].
Architectures based on memristors have been demonstrated to be high density, low power consuming and also analog
computing, forming them an ideal choice when implementing the functionality of synapses in neuromorphic circuits.
Combined with edge computing devices, these designs enable real-time learning and adaptive intelligence at
surveillance nodes to avoid constant cloud-connectivity [3]. This will not only improve on performance and energy
efficiency, but will also improve on data privacy and security because sensitive video feeds will be processed on site
instead of being sent to the remote servers. The study examines the design and implementation of the neuromorphic
engineering of memristor-based neuromorphic systems to develop smart surveillance systems, which can be used to
identify objects at high time and adaptive event detection, and process them at low power and edge computing. The
research will allow showcasing the ability of neuromorphic systems to transform surveillance infrastructure by
incorporating emerging hardware and bioinspired algorithms. Eventually, the method will aim at developing a
sustainable and robust model of real-time monitoring, which corresponds with the future outlook of autonomous, safe,
and energy-efficient smart urban centers.

Il. RELATED WORKS

The last few years have seen a tremendous advance with respect to integrating artificial intelligence (Al) with up-and-
coming hardware technology in order to achieve efficient and adaptive computing on the edge efficiently. This
literature is directly useful in the development of neuromorphic edge intelligence in architectures based on memristor-
based hardware applications like smart surveillance. The finders have delved into varied solutions, including artificial
intelligence-based circuits and flexible sensors, hardware optimization, and machine learning principles that are
sustainable, and all these are the building blocks of the neuromorphic systems. Lorenzo and Dini [14] offered an
extensive overview of hardware and software technology that allows onboard neural network inference of satellite
systems. They demonstrated the value of hardware optimization and in-memory computing to realize low-latency,
low-power Al processing with limited conditions an idea that is inherently connected with memristor-based
neuromorphic computing in the edge. Likewise, Miller et al. [15] discussed the current trends in Al circuits and
systems with special focus on the architectures that attempt to generatively simulate biological neural activities. Their
article emphasized the development of hybrid analog-digital systems and the increasing relevance of hardware-
software co-design to neuromorphic performance optimization. Mingchen et al. [16] proposed an Al-mediated
BioMEMS sensor module that was meant to perform an ongoing physiological assessment and long-term energy
generation. Their concept of using machine learning and low-energy bio-electronic devices demonstrates how the
principles of analog computing can be useful in energy efficiency and flexibility - major benefits also utilized in
neuromorphic computing with memristors. This debate was further expanded by Mohsin et al. [17], in their review of
the advanced gasistor-based sensors to detect fire and the importance of sensor fusion, rapid response and adaptive
intelligence to edge-based monitoring systems which is similar to the goal of smart surveillance.
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Raman et al. [18] also examined the shift towards sustainable and energy-conscious Al systems that presents a
thematic and topic modeling analysis of the green and sustainable Al literature. Their results overall found
neuromorphic and memristor-based computing of potential in the future as opportunities to mitigate the environmental
impact of large-scale Al deployments. On the same note, Sun et al. [19] talked about converging flexible sensor
technologies and artificial synapses and how machine learning-based smart sensing systems thematic can be helped
by analog, adaptive and self-learning devices. This combination of adaptable electronics and available artificial
synapses are offering practical methods of minimal scale, energy-saving, and intelligent surveillance modules. On a
larger scale, Tripathy et al. [20] conducted the exploration of the convergence between nanotechnology and machine
learning, highlighting the difficulties and opportunities of merging nanoscale materials and algorithms of Al. Their
article on the computing systems based on memristive and nanowire computing platforms brings to attention their
capability in achieving bio-inspired architectures that can learn quickly and efficiently. To augment this, Wang et al.
[21] proposed the DRnet model that applies dynamic retraining in describing small sample incremental learning in
cybersecurity. The incremental learning approach they prove is relevant to the objective of neuromorphic edge
intelligence of real-time adaptability that requires continuous learning in sparse or streaming data. Together, these
papers [14-21] are indicative of a promising research path of combining Al and neural scale devices, as well as
neuromorphic architecture, to achieve efficient, sustainable, and autonomous intelligent systems. The literature
reviewed indicates that neuromorphic computing with memristor can be used in real-time surveillance since it has a
better energy efficiency, scalability, and flexibility than the traditional digital systems. This networking highlights that
the combined innovation of Al hardware and edge intelligence would be one of the radical directions to the next
revolution of intelligent, self-educated surveillance infrastructure.

11l. METHODS AND MATERIALS
This chapter identifies the methodology that will be followed to explore the design and implementation of
neuromorphic edge architectures based on memristors to be used in smart surveillance. It employs hardware modeling,
neuromorphic computation, and edge intelligence strategies as part of the methodology towards low-power high-
efficiency and privacy-preserving surveillance systems [4]. The research utilises mixed approach with the techniques
used being simulation based experiments and the analytical performance evaluation.
3.1 Research Design
The study takes the form of an experiment and analysis. The experimental step will entail modeling and simulation of
neuromorphic circuits employing memristors to determine the computational performance, energy dissipation, and
recognition ability of neuromorphic circuits operating under different workloads. The performance of the proposed
neuromorphic edge system is compared against the conventional CPU-based and GPU-based edge devices through
analytical assessment to find out performance improvements.
The entire research process is characterized into four major stages;
1. Architecture Design: Experiments on an architecture model of memristor-based neuromorphic architecture.
2. Phase: Data and Task Selection: Choice of representative surveillance data as well as specifying
recognition tasks (object detection and anomaly detection).
3. Simulation and Performance Measurement: Analysis in terms of simulation and neuromorphic constructs.
4. Analysis and validation: Comparative evaluation of traditional edge architectures on latency, power, and
accuracy [5].
3.2 Data and Tools
The study utilizes the secondary research of the published surveillance datasets including CAVIAR, UCF-Crime, and
Al City Challenge Dataset, which consist of video sequences of any kind that are labeled as either real or fake activities
in the real world. These datasets provide the opportunity of testing in the varied environmental conditions, depending
on light, and dynamics of objects movement [6].
In simulation and modeling, the subsequent tools and structures are used:
e Python and MATLAB to analyze and preprocess data.
e Neuromorphic simulation Applications nengo and Brian2.
e Neural networks SoonRT created Neural networks using PyTorch to implement Hybrid Spiking neural
networks (SNNSs).
e Simulation of memristor circuits and their behavior In memristor circuits modeling and analysis LTspice.
The characteristics of memristor device integration are founded on the empirical models that were described in the
literature, so that the analog memristive synaptic dynamics would be simulated realistically.
3.3 Neuromorphic Architecture Development
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Three layers of neuromorphic edge system, including input encoding, spiking neural computation, and decision output,
are proposed. The memristor crossbar array is the synaptic layer, with weight adjustments in this case being
proportional to the memristor conductance. The spike-based calculation is a biological neuron model, which is able to
handle processes using a lot of energy effectively [7].

State-of-the-art memristor materials such as TiO 2 and HfO 2 are used to determine the design parameters of the
system including pulse width, threshold voltage and switching ratio. Each of the memiristors is a kind of a synaptic
component which may store analog weight values, making memory-access energy to be much lower.

Table 1: Memristor Parameter Configuration for Neuromorphic Edge Model

Parameter Description Value
Range
Device Titanium  Dioxide | —
Material (TiO2)
Threshold Voltage required for | 0.7 -
Voltage (Vth) | state switching 1.2V
Switching Time for ON/OFF | 10 -
Time transition 100 ns
ON/OFF Resistance difference | 103 —
Ratio between states 10°
Endurance Number of reliable | 107 -
switching cycles 10°
Retention Data holding | >10
Time capability years

3.4 Edge Intelligence Implementation
The spiking neural networks (SNNs) are used to process visual data at the edge at the system level. These networks
directly operate with the spike domain, which manages the spatiotemporal data without having to calculate the power-
intensive continuous matrix products that are computed in the classical convolutional neural networks (CNNs).
The computation is analogous in format, with multiply-accumulate (MAC) operations implemented by the memristor
crosshar array and reducing computational latency and power by an extremely large factor. Edge nodes are hardware
with neuromorphic processors with local learning modules that utilize the Spike-Timing Dependent Plasticity (STDP)
to learn and adapt online.
The architecture allows simple features (e.g., motion detection, silhouette extraction) to be computed locally and a
complex task (e.g., object identification or behavioral recognition) to be computed on a higher level using higher tiers
of edges. This cuts down the transmission of data and increases speed in response time especially in applications that
require high security level [8].
3.5 Experimental Procedure
1. Data Preprocessing: Temporal difference encoding (TDE) is used to encode video data in the form of
spiking events.
2. Model Training: Neuromorphic model is trained in hybrid mode whereby, the model is weight-initialized
using supervised learning after which STDP-based fine-tuning is carried out.
3. Simulation: The network of memristor is simulated (at normal and high workload), to test its system standby
and response time.
4. Performance Measurement: such measures like energy consumption, inference latency, classification
accuracy as well as bandwidth utilization are noted [9].
5. Comparative Analysis: Comparisons are made between outcomes and conventional CNN-based edge
devices, to show that the results are much less efficient and have reduced scalability.
Table 2: Performance Evaluation Metrics
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Metric Definition Measurem
ent Unit
Energy Power used per | mJ/frame
Consumption inference
Inference Time to process | ms
Latency each frame
Accuracy Correct %

classification rate

Memory Storage used | MB
Utilization during operation

Communicatio | Data transmitted | KB/s
n Overhead per operation

3.6 Data Analysis Techniques

Statistical analysis of the data taken in simulations is done to compare the energy efficiency, accuracy and latency
across the various configurations. They are analyzed with the help of Analysis of Variance (ANOVA) that is going to
find out the significant differences in memristor-based and conventional models. Regression analysis allows to
recognize links between the parameters of the devices (e.g., threshold voltage) and the performance results. To
visualize trends in the behavior of systems, the visualization tools like matplotlib and Tableau are used.

3.7 Ethical and Reliability Considerations

All data used are open-source surveillance datasets, which meet the privacy and ethics requirements. The study does
not take into consideration any personally identifiable information, and all the statues are processed under
anonymization ethical standards and protocols. Replicas of simulation experiments are carried out at different runs to
check the reproducibility, and to make the result robust variability of memristors is modeled on random perturbations
[10].

IV. RESULTS AND ANALYSIS

The chapter introduces and discusses the findings of simulations and experimental testing revealed of the memristor-
based neuromorphic edge architecture created to be used in smart surveillance. It is concerned with the evaluation of
system performance with regard to a number of key dimensions, which include energy efficiency, latency of the
inference, the accuracy of recognition, and level of adaptability to a variety of environmental circumstances. The
performance is contrasted with the conventional models of deep learning, which involve edges to illustrate that the
proposed system is superior in terms of efficiency, scalability, and responsiveness [11].

4.1 Overview of Experimental Evaluation

The simulations took place with simulated arrays of memristors and spiking neural networks (SNNSs) placed into an
edge computing structure. The architecture was evaluated with reference to three surveillance datasets, a CAVIAR,
UCF-Crime, and Al City Challenge, and indicates a variety of real-life scenarios including public spaces, roadways,
and business premises [12]. The neuromorphic model that is being studied and based on the memristor was compared
with the traditional Convolutional Neural Network (CNN) and edge models that are run on the GPU.

Object recognition, activity classification and anomaly detection tests were undertaken in each test scenario. Major
performance indicators included power per frame, inference time, classification rate, memory consumption, and
communication cost. The tests were done on the same amount of work and conditions so that they can be compared.
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Figure 1: “Memristor-Based Signal Processing for Compressed Sensing”
4.2 Energy Efficiency Analysis
Energy consumption is an important parameter to determine the practicability of implementing intelligent surveillance
systems at the edge. The neuromorphic model, a memristor, demonstrated the substantial drop in the energy
consumption because of the analog in-memory computing and occurrences triggered operations.
Table 1 demonstrates that the neuromorphic edge architecture used 83 per cent of the energy as compared to the
conventional CNN-based edge models. This reduces dynamic power consumption to the lowest possible level since it
can compute without frequent access to memory as it does with the analog nature of memristor crossbars.
Table 1: Energy Consumption Comparison between Architectures

Architectur | Average | Energy | Proces
e Type Energy Reduct | sing

per ion (%) | Mode

Frame

(mJ)
Conventiona | 12.5 - Seque
I CNN ntial
(CPU) Digital
CNN (GPU | 8.3 33.6 Paralle
Edge |
Device) Digital
SNN 3.1 75.2 Event-
(Digital) Driven

Digital

Memristor- 2.1 83.2 Analo
Based g In-
Neuromorph Memo
ic System ry

The analog Memristor crossbar model used also minimized redundant multiplication by computing only those
significant events of spiking. This method is a replica of biological neurons, only relevant stimuli cause electrical
activation which results in high energy efficiency. Moreover, STDP learning mechanism dynamically changes the
synaptic weights to minimize computation at any given time and minimizes the redundant changing operations.
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Figure 2: “The landscape of memristor-based systems for Al. In-memory computing aims to eliminate the von-Neumann bottleneck by
implementing compute directly within the memory”

4.3 Latency Performance

Inference latency directly affects responsiveness of a surveillance system and in areas of safety-related use (e.g. traffic
policing or citizen security) [13]. The memristor-based architecture as revealed in Table 2 recorded the fastest end-to-
end data inference speed at 4.6 milliseconds per frame, which was much higher in comparison with the inference
speed of the GPU-based CNN models, which reached 13.2 milliseconds per frame on average.

Table 2: Latency Performance of Edge Architectures

Architect | Inference Impro | Process
ure Latency vemen | ing
(ms/frame | t (%) | Paradi
) gm
Conventi | 24.7 - Digital
onal CNN Serial
(CPU)
CNN 13.2 46.5 Digital
(GPU Parallel
Edge)
SNN 7.3 70.4 Event-
(Digital) Based
Memristo | 4.6 81.4 Analog
r In-
Neuromo Memor
rphic y

Improvements in latency are due to parallel processing of memristor crossbars and the event camera computation of
spikes. The system does not deal with redundant activities since it is utilized to transmit active spiking events, thus
providing rapid response and minimized computational time. This attribute is especially useful in situations of real-
time surveillance when it is necessary to quickly identify a suspicious activity or an object.
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4.4 Recognition Accuracy
Accuracy was measured with regard to the object detection, activity recognition and anomaly identify task. Although
analog computation and event-based encoding were being used, the neuromorphic model ensured competitive or
strong accuracy than digital SNNS and CNN models.

Table 3: Accuracy Comparison across Different Surveillance Tasks
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3: “Memristor-Based Edge Detection for Spike Encoded Pixels”

Task CNN | SN | Memrist | Accur

Type (GP | N or acy
] (Dig | Neurom | Gain
Edge | ital) | orphic (%)
)

Object | 93.1 | 91.7 | 94.8% +1.7

Detect | % %

ion

Activit | 89.4 | 87.3 | 91.6% +2.2

y % %

Recog

nition

Anom | 86.7 | 84.9 | 89.2% +2.5

aly % %

Detect

ion

Overal | 89.7 | 87.9 | 91.9% +2.5

| % %

Avera

ge

The findings show that neither analog noise nor variability of the memristor considerably deteriorated recognition
power. Instead, Adaptive STDP learning rule enhanced the functioning of the system with respect to dynamic visual
changes. Moreover, the model had the ability to learn local edges making it adjustable to environmental changes which
might include lighting shifts or changes in camera angle improving the robustness of the model when applied in
practice [14].
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Figure 4: “Neuromorphic Computing”

4.5 Memory and Bandwidth Usage

Edge devices are commonly poorly equipped in storage and bandwidth of communication. The neuromorphic system
was also identified to be more efficient as the memristor needed 42 MB of on-chip data space to store memory, as
opposed to 220 MB necessary in CNN-based neuromorphic models. Videos bandwidth was also cut by 68 percent
since raw video data were not sent to a remote server, only event-based coded data or feature spike extractions were
sent.

Table 4. Memory and Bandwidth Utilization

Architec | Memo | Bandwi | Reductio

ture ry dth n in
Usage | Usage Bandwidt
(MB) | (KB/s) h (%)

CNN 245 560 -

(CPU

Edge)

CNN 220 420 25.0

(GPU

Edge)

SNN 95 210 62.5

(Digital)

Memrist | 42 180 67.9

or

Neurom

orphic

The findings emphasize the appropriateness of memristor-based architectures to resource-constrained edge
environments including smart cameras or embedded surveillance modules. System privacy and security are also
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improved because the sensitive image information do not leave the system since the system no longer needs to transfer
large amounts of data

4.6 Environmental Robustness and Adaptive Learning

Real time learning and adaptation is one of the major benefits of neuromorphic architectures. The system uses a
mechanism, Spike-Timing Dependent Plasticity (STDP), to constantly synchronize its weights depending on visual
feedback with the help of reinforcement feedback. It was tested in different illumination, motion densities to assess
environmental robustness of the model.

Table 5: System Performance under Environmental Variations

Enviro | CNN | Neurom | Late | Ene
nmenta | Accu | orphic ncy | rgy
I racy | Accurac | Cha | Cha
Conditi | (%) y (%) nge | nge
on (%) | (%)

Normal | 94.0 | 94.8 - -
Lightin
g

Low 85.6 |90.3 +3.1 | +4.2
Light

High 86.7 |91.1 +2.8 | +5.5
Motion
Density

Partial 82.5 | 88.9 +45 | +6.7
Occlusi
on

It has been found out that the neuromorphic system performed more efficiently during problematic conditions than
conventional CNNs, preserving greater accuracy and reduced fluctuations in latency value. The memristors have an
analog adaptive behavior that allows the gradual updates of scaling of conductance, which enables resilience to noise
and variable input patterns.

V. CONCLUSION

This study established how neuromorphic edge intelligence based on memristor can be a revolutionary technology in
creating effective, adaptation, and sustainable smart surveillance systems. The proposed architecture demonstrated a
very small balance of functionality, performance, and scalability by emulating the architecture and functionality of
the human brain. However, simulation findings showed that the neuromorphic model based on memristors had a
significant advantage over the traditional CNN and GPU-based edge systems, with up to 83 percent of energy-saving,
81 percent faster inference latency, and 2.5 per cent recognition accuracy improvement in a variety of surveillance
tasks. The in-memory computation and event processing based on event-driven flux of spikes reduced redundant data
communications and computation load that guaranteed real time responsiveness and enhanced security by local
computation of data. In addition, the adaptive learning process allowed the system to adapt dynamically to changes in
the environment to ensure a stable system under low-light conditions or high-density motion-adverse conditions. The
results verify that the incorporation of memristive devices, neuromorphic calculation, and edge intelligence will form
the basis of the following generation of smart surveillance ecosystems. In addition to surveillance, this structure has
potential to apply in larger scopes in smart cities, industrial automation, and autonomous systems. Finally, the
importance of this study is high as it leads to the development of energy-efficient, privacy-focused, and bio-inspired
Al architectures, which will be used in the sustainable implementation of intelligent technologies in practice in the
real monitoring and decision-making field.
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